If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+6t-40=0
a = 3; b = 6; c = -40;
Δ = b2-4ac
Δ = 62-4·3·(-40)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{129}}{2*3}=\frac{-6-2\sqrt{129}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{129}}{2*3}=\frac{-6+2\sqrt{129}}{6} $
| 9*x*x-12*x+4=0 | | 5m-7=(m-9)+15 | | 2x^-11x+15=0 | | 2x-2/3×(3x-1/5)=1/5-1/5×(1/3x+1) | | 2+5r=11 | | (2w-4/3=w-3 | | x*x+2*x-35=0 | | 3x²+x=4 | | 3x²+x=0 | | 3x²+x-4=0 | | 16+m^2+16m-4=0 | | 2*x*x-18=0 | | x*x+100=0 | | 16+6e=-62 | | X(x12)=108 | | X^3+4x+321=0 | | 3x+3x=100 | | -7-d/8=4 | | 5x-3=2+3x | | -14-11c=107 | | 21+14b=-49 | | 19+9a/20=5 | | x+2=x-18 | | -6-7z=8 | | -8-3x=-32 | | -5+10w=-75 | | -26+5u=3u+50 | | 23s-6=11s+30 | | 15r+15=7r-25 | | 6q-17=3q+13 | | 2p-8/7=-10 | | 12n+38=6n+20 |